តារាងអាំងតេក្រាលនៃអនុគមន៍អសនិទាន

ពីtestwiki
Jump to navigation Jump to search

ខាងក្រោមនេះជាតារាងអាំងតេក្រាល(ព្រីមីទីវ)នៃអនុគមន៍អសនិទាន។ សំរាប់បញ្ជីពេញលេញសូមមើលតារាងអាំងតេក្រាល

អាំងតេក្រាលដែលមាន r=x2+a2

  • rdx=12(xr+a2ln(x+r))
  • r3dx=14xr3+183a2xr+38a4ln(x+r)
  • r5dx=16xr5+524a2xr3+516a4xr+516a6ln(x+r)
  • xrdx=r33
  • xr3dx=r55
  • xr2n+1dx=r2n+32n+3
  • x2rdx=xr34a2xr8a48ln(x+r)
  • x2r3dx=xr56a2xr324a4xr16a616ln(x+r)
  • x3rdx=r55a2r33
  • x3r3dx=r77a2r55
  • x3r2n+1dx=r2n+52n+5a3r2n+32n+3
  • x4rdx=x3r36a2xr38+a4xr16+a616ln(x+r)
  • x4r3dx=x3r58a2xr516+a4xr364+3a6xr128+3a8128ln(x+r)
  • x5rdx=r772a2r55+a4r33
  • x5r3dx=r992a2r77+a4r55
  • x5r2n+1dx=r2n+72n+72a2r2n+52n+5+a4r2n+32n+3
  • rdxx=raln|a+rx|=raarsinhax
  • r3dxx=r33+a2ra3ln|a+rx|
  • r5dxx=r55+a2r33+a4ra5ln|a+rx|
  • r7dxx=r77+a2r55+a4r33+a6ra7ln|a+rx|
  • dxr=arsinhxa=ln|x+r|
  • dxr3=xa2r
  • xdxr=r
  • xdxr3=1r
  • x2dxr=x2ra22arsinhxa=x2ra22ln|x+r|
  • dxxr=1aarsinhax=1aln|a+rx|

អាំងតេក្រាលដែលមាន s=x2a2

សន្មត់ថា (x2>a2)។ ចំពោះ (x2<a2) សូមមើលផ្នែកបន្ទាប់៖

xsdx=13s3
sdxx=saarccos|ax|
dxs=dxx2a2=ln|x+sa|

ចំណាំ ln|x+sa|=sgn(x)arcosh|xa|=12ln(x+sxs) ដែលតំលៃវិជ្ជមាននៃ arcosh|xa| ត្រូវបានយក។

xdxs=s
xdxs3=1s
xdxs5=13s3
xdxs7=15s5
xdxs2n+1=1(2n1)s2n1
x2mdxs2n+1=12n1x2m1s2n1+2m12n1x2m2dxs2n1
x2dxs=xs2+a22ln|x+sa|
x2dxs3=xs+ln|x+sa|
x4dxs=x3s4+38a2xs+38a4ln|x+sa|
x4dxs3=xs2a2xs+32a2ln|x+sa|
x4dxs5=xs13x3s3+ln|x+sa|
x2mdxs2n+1=(1)nm1a2(nm)i=0nm112(m+i)+1(nm1i)x2(m+i)+1s2(m+i)+1(n>m0)
dxs3=1a2xs
dxs5=1a4[xs13x3s3]
dxs7=1a6[xs23x3s3+15x5s5]
dxs9=1a8[xs33x3s3+35x5s517x7s7]
x2dxs5=1a2x33s3
x2dxs7=1a4[13x3s315x5s5]
x2dxs9=1a6[13x3s325x5s5+17x7s7]

អាំងតេក្រាលដែលមាន u=a2x2

udx=12(xu+a2arcsinxa)(|x||a|)
xudx=13u3(|x||a|)
udxx=ualn|a+ux|(|x||a|)
dxu=arcsinxa(|x||a|)
x2dxu=12(xu+a2arcsinxa)(|x||a|)
udx=12(xusgnxarcosh|xa|)(for |x||a|)

អាំងតេក្រាលដែលមាន R=ax2+bx+c

សន្មត់ថា (ax2 + bx + c) មិនអាចសរសេរជាទំរង់ (px + q)2

dxR=1aln|2aR+2ax+b| ចំពោះ(a>0)
dxR=1aarsinh2ax+b4acb2 ចំពោះ(a>0,4acb2>0)
dxR=1aln|2ax+b| ចំពោះ(a>0,4acb2=0)
dxR=1aarcsin2ax+bb24ac ចំពោះ(a<0,4acb2<0,|2ax+b|<b24ac)
dxR3=4ax+2b(4acb2)R
dxR5=4ax+2b3(4acb2)R(1R2+8a4acb2)
dxR2n+1=2(2n1)(4acb2)(2ax+bR2n1+4a(n1)dxR2n1)
xRdx=Rab2adxR
xR3dx=2bx+4c(4acb2)R
xR2n+1dx=1(2n1)aR2n1b2adxR2n+1
dxxR=1cln(2cR+bx+2cx)
dxxR=1carsinh(bx+2c|x|4acb2)

អាំងតេក្រាលដែលមាន S=ax+b

Sdx=2S33a
dxS=2Sa
dxxS={2barcoth(Sb)(b>0,ax>0)2bartanh(Sb)(b>0,ax<0)2barctan(Sb)(b<0)
Sxdx={2(Sbarcoth(Sb))(b>0,ax>0)2(Sbartanh(Sb))(b>0,ax<0)2(Sbarctan(Sb))(b<0)
xnSdx=2a(2n+1)(xnSbnxn1Sdx)
xnSdx=2a(2n+3)(xnS3nbxn1Sdx)
1xnSdx=1b(n1)(Sxn1+(n32)adxxn1S)

ទំព័រគំរូ:តារាងអាំងតេក្រាល