លេអុនហាដ អយល័រ

ពីtestwiki
Jump to navigation Jump to search

ទំព័រគំរូ:Infobox scientist


លេអុនហាដ អយល័រ (ទំព័រគំរូ:Lang-de, ​អានតាមអាល្លឺម៉ង់ : /ˈɔʏlɐ/;[] ១៥ មេសា ឆ្នាំ ១៧០៧ - ១៨ កញ្ញា ឆ្នាំ ១៧៨៣) ជា​គណិតវិទូនិង​រូបវិទូ​​ស្វ៊ីស​ដ៏​ល្បី​ល្បាញ​មួយ​រូប។ គាត់​បាន​ស្រាវជ្រាវ​រក​ឃើញ​​របស់​សំខាន់​ៗ​ជា​ច្រើន​ក្នុង​វិស័យដ៏​ទូលំ​ទូលាយ​ដូចជា​ការ​គណនា​មិន​កំណត់ (infinitesimal calculus) និង​ទ្រឹស្ដី​ក្រាប។ គាត់​ក៏​ជាអ្នក​បង្កើត​ពាក្យនិង​និមិត្តសញ្ញា​​គណិតវិទ្យា​​ទំនើបជា​ច្រើន​ផង​ដែរ ជា​ពិសេស​សម្រាប់​ផ្នែក​គណិត​វិភាគ ដូច​ជា​សញ្ញា​តំណាង​អនុគមន៍​ជា​ដើម។[] គាត់​បាន​បង្កើត​ស្នាដៃ​ល្បី​ៗ​ក្នុង​វិស័យ​មេកានិច ឌីណាមិច​អង្គធាតុរាវ អុបទិច​និង​តារាវិទ្យា។

អយល័រ​បាន​ចំណាយ​ពេលវេលា​ភាគ​ច្រើន​នៃ​ជីវិត​ពេញ​វ័យ​របស់​គាត់​រស់​នៅ​ក្នុង​ក្រុងសាំង​ពេទ័របួគ៌ ប្រទេស​រុស្ស៊ី និង​ក្រុង​ប៊ែរឡាំង​ រាជាណាចក្រ​ព្រុស្ស៊ីយ៉ា (សព្វ​ថ្ងៃ​ប្រទេស​អាល្លឺម៉ង់)។ គាត់​ត្រូវ​បាន​គេ​ចាត់ទុក​ថា​ជា​គណិតវិទូ​ដ៏​ល្បី​បំផុត​នៅ​ក្នុង​សតវត្សរ៍​ទី​១៨ និងអាច​ចាត់​ទុក​​ជា​គណិតវិទូ​ដ៏​ល្បី​បំផុត​គ្រប់​កាល​សម័យ ដោយ​មិន​អាច​ប្រកែក​បាន។ គាត់​ជា​បុគ្គល​ដែល​បាន​បង្កើត​​ស្នាដៃ​ដ៏​ច្រើន​; ស្នាដៃ​របស់​គាត់​បើ​​ចង​ក្រង​ជា​សៀវភៅទម្រង់​​ក្វារតូ(សៀវភៅ​ទំហំ 9x12") នោះ​អាច​មាន​រហូត​ដល់​៦០ទៅ​៨០​ក្បាល។[] លោក​ ព្យែរ​ស៊ីម៉ុន ឡាប្លាស់ បាន​សម្ដែង​ពី​ឥទ្ធិពល​របស់​លោក​អយល័រ​ក្នុង​ផ្នែក​គណិត​វិទ្យា​ ដោយ​ប្រយោគ​មួយ​ឃ្លា​ថា "អាន​អយល័រ, អាន​អយល័រ, គាត់​ជា​គ្រូ​របស់​យើង​ក្នុង​គ្រប់​វិស័យ" ដែល​ក្រោយ​មក​គេ​សម្រួល​មក​ជា ""អាន​អយល័រ, អាន​អយល័រ, គាត់​ជា​គ្រូ​របស់​យើងទាំង​អស់​គ្នា"។ []

រូបថត​អយល័រ ត្រូវ​បាន​ដាក់​បង្ហាញ​នៅ​លើ​ក្រដាស​ប្រាក់​១០​ហ្វ្រង់​ស៊េរី​ទី​១០​របស់​ស្វ៊ីស និង​នៅ​លើ​តែម​ជា​ច្រើន​របស់​ប្រទេស​ស្វ៊ីស អាល្លឺម៉ង់ និង​រុស្ស៊ី។ គេ​បាន​ដាក់​ឈ្មោះ​កូនភព​មួយ​ថា កូន​ភព​អយល័រ​២០០២ ដើម្បី​ជា​ការ​ផ្ដល់​កិត្តិយស​ដល់​គាត់​។ គាត់​ក៏​ត្រូវ​បាន​គេ​កត់​បញ្ចូល​ដើម្បី​ធ្វើ​បុណ្យ​រំលឹក​គុណ​ដោយ​ព្រះ​វិហារ ​Lutheran ទៅ​ក្នុង​ប្រក្រតីទិន​នៃសន្តបុគ្គលក្នុង​ថ្ងៃ​២៤ឧសភា; អយល័រ​ជា​អ្នក​ជឿ​ស៊ប់​លើ​សាសនា​គ្រឹស្ទ ដែល​ជឿ​ថា​ព្រះ​គម្ពីរ​ត្រឹមត្រូវ​ឥតខ្ចោះ ហើយ​បាន​សរសេរ​លិខិត​ជា​ច្រើន​ការពារ​សាសនា​ទប់​ទល់​នឹង​អ្នក​ដែល​មិន​ជឿ​លើ​ព្រះ​គម្ពីរ​នា​សម័យ​នោះ។[]

ឆាក​ជីវិត

បឋមកាល

ក្រដាស​ប្រាក់​១០​ហ្វ្រង់​ចាស់​របស់​ស្វ៊ីស ដែល​ផ្ដល់​កិត្តិយស​ដល់​អយល័រ

អយល័រ​បាន​កើត​នៅ​ថ្ងៃ​ទី​១៥ ខែ​មេសា ឆ្នាំ​១៧០៧ នៅ​បាហ្សល (Basel)។ ឪពុក​របស់​គាត់​ឈ្មោះ ប៉ូល​អយល័រ ជា​ប៉ាស្ទ័រ​របស់​ព្រះវិហារ​ប្រូតេស្តង់។ ម្ដាយ​របស់​គាត់​ឈ្មោះ​ម៉ាកឺរីត​ប្រាក់ឃ័រ ជា​កូន​ស្រី​របស់​​ប៉ាស្ទ័រ​ម្នាក់។ គាត់​មាន​ប្អូន​ស្រី​ពីរ​​នាក់​ឈ្មោះ អាណា​ម៉ារីយ៉ា និង ម៉ារីយ៉ា ម៉ាក់​ដាលេណា។ មួយ​រយៈ​ខ្លី​ក្រោយ​កំណើត​របស់​លេអុនហាដ គ្រួសារ​អយល័រ​បាន​រើ​ចេញ​ពី​បាហ្សល​ទៅ​រស់​នៅ​ក្រុង​ Riehen ដែល​នៅទី​នោះ​អយល័រ​បានរស់​នៅ​យ៉ាង​ក្នុង​វ័យ​កុមារភាព។​ ប៉ូល​អយល័រ​ជា​មិត្តភក្តិ​របស់​គ្រួសារ​ប៊ែរនូលី—យ៉ូហាន ប៊ែរនូលី ដែល​ត្រូវ​បាន​គេ​ចាត់​ទុក​ថា​ជា​គណិតវិទួ​ដ៏​ល្បី​បំផុត​នៅ​អឺរ៉ុប ហើយអាច​ជា​អ្នក​ដ៏​មាន​ឥទ្ធិពល​ម្នាក់​ទៅ​លើ​យុវជន​លេអុនហាដ។ អយល័រ​បាន​ចាប់​ផ្ដើម​សិក្សា​នៅ​បាហ្សល ដែល​នៅ​ទី​នោះ​គាត់​ត្រូវ​បាន​បញ្ជូន​ឱ្យ​ទៅ​រស់​នៅ​ជាមួយ​យាយ​ខាង​ម្ដាយ។ នៅ​អាយុ​​១៣​ឆ្នាំ គាត់​បាន​ចូល​រៀន​នៅ​សាកល​វិទ្យាល័យ​បាហ្សល​ ហើយ​នៅ​ឆ្នាំ​១៧២៣ គាត់​បាន​ទទួល​សញ្ញាប័ត្រ​ថ្នាក់​ម៉ាស្ទ័រ​ផ្នែក​ទស្សនវិជ្ជា ដែល​បរមាធិប្បាយ​របស់​គាត់​ប្រៀប​បាន​នឹង​ទស្សនវិជ្ជា​របស់​ដេកាត និង​ញូតុន​ដែរ។ នៅ​ក្នុង​ពេល​នោះ គាត់​តែ​ង​ទៅ​រៀន​ជាមួយ​យ៉ូហាន​ប៊ែរនូលី​នា​រៀងរាល់​ល្ងាច​ថ្ងៃ​សៅរ៍។ ប៊ែរនូលី​បាន​ដឹង​ច្បាស់​ថា​កូន​សិស្ស​របស់​គាត់​មាន​ជំនាញ​ខាង​គណិត​វិទ្យា។ [] នៅ​ពេល​នោះ​អយល័រ​កំពុង​សិក្សាទេវាវិទ្យា ភាសាក្រិច និង​ភាសា​ហ៊ីប្រូវ៍ (Hebrew) ក្រោម​សម្ពាធ​ពី​ឪពុកដើម្បី​ក្លាយ​ជា​ប៉ាស្ទ័រ, ប៉ុន្តែ​ប៊ែរនូលី​បាន​ជម្នះ​ប៉ូល​អយល័រថា លេអុនហាដ​​មាន​វាសនា​កើត​មក​ត្រូវ​ក្លាយ​ជា​គណិតវិទូ​ដ៏​ល្បីល្បាញ​មួយ​រូប។ នៅ​ឆ្នាំ​១៧២៦ អយល័រ​បាន​បញ្ចប់​សារណាលើ​ដំណាល​នៃ​សំឡេង ក្រោម​ចំណង​ជើង​ថា De Sono[]. ក្នុង​ពេល​នោះ គាត់​បាន​ដាក់​បេក្ខភាព​ប្រកួត​ប្រជែង​ដណ្ដើម​មុខ​តំណែង​នៅ​សកល​វិទ្យាល័យ​បាហ្សល​ តែ​ត្រូវ​បរាជ័យ។ នៅ​ឆ្នាំ​១៧២៧ គាត់​បាន​ចូល​រួម​ប្រកួត​ប្រជែង​ដណ្ដើម​​ពានរង្វាន់​ចំណោទ​បណ្ឌិតសភា​ប៉ារីស​ ដែល​ចំណោទ​នា​សម័យ​នោះ​គឺ​រក​វិធី​ដែល​ប្រសើរ​បំផុត​ក្នុង​ការដាក់ដង​​ក្ដោង​ទូក។ ​គាត់​បានឈ្នះ​រង្វាន់​លេខ​២ ដោយ​លេខ​មួយ​បាន​ទៅ​លោក ព្យែរ​ប៊ូគេរ(Pierre Bouguer)— ដែល​គេ​ស្គាល់​ថា​ជា​បិតា​នៃ​ស្ថាបត្យកម្ម​​នាវា​។ នៅ​ពេល​ក្រោយ​មក​ អយល័រ​បាន​ឈ្នះ​ការ​ប្រកួត​ប្រចាំ​ឆ្នាំនេះ​ចំនួន​១២​ដង។ []

ជីវិត​នៅ​​សាំង​ពេទ័របួគ៌

អំលុង​នោះ កូន​ប្រុស​ទាំង​ពីរ​នាក់​របស់​យ៉ូហាន​ប៊ែរនូលី គឺ ដានីញែល​ប៊ែរនូលី និង នីកូឡាប៊ែរនូលី កំពុង​តែ​ធ្វើ​ការ​​នៅ​បណ្ឌិតសភា​វិទ្យាសាស្ត្រ​ចក្រភព​រុស្ស៊ី នៅ​សាំង​ពេទ័រ​បួគ៌។ នៅ​ថ្ងៃ​ទី​១០ កក្កដា​ ឆ្នាំ​១៧២៦ នីកូឡា​បាន​ស្លាប់​ដោយ​សារ​រលាក​ខ្នែង​ពោះ​វៀន បន្ទាប់​ពី​រស់​នៅ​នៅ​រុស្ស៊ី​បាន​មួយ​ឆ្នាំ​មក។ នៅ​ពេល​ដែល​ដានីញែល​ទទួល​តំណែង​របស់​បង​ប្រុស​គាត់​នៅ​ដេប៉ាតឺម៉ង់​គណិត​វិទ្យា​និងរូប​វិទ្យា គាត់​បាន​ស្នើ​ឡើង​ថា តំណែងសរីរសាស្ត្រ​ដែល​គាត់​បាន​បោះ​បង់​គួរ​តែ​ផ្ដល់​ទៅ​មិត្ត​របស់​គាត់​គឺ​អយល័រ។ ក្នុង​ខែ​វិច្ឆិកា ១៧២៦ បាន​ព្រម​ទទួលយក​តំណែង​នេះ​ ប៉ុន្តែ​បាន​ពន្យារ​ពេល​ធ្វើ​ដំណើរ​ទៅ​សាំង​ពេទ័រ​បួគ៌ ដោយ​សារ​ពេល​នោះ​គាត់​បាន​ដាក់​ពាក្យ​ធ្វើ​ជា​សាស្ត្រា​ចារ្យ​នៅ​សកល​វិទ្យាល័យ​បាហ្សល​។ []

តែម​ឆ្នាំ ១៩៥៧ របស់​អតីត សហភាព​សូវៀត រំលឹក​ខួបកំណើត​ទី​២៥០​របស់​អយល័រ។ អត្ថបទ​នេះ​សរសេរ​ថា៖ ២៥០​ឆ្នាំ​បន្ទាប់​ពី​កំណើត​នៃ​គណិតវិទូ​ដ៏​ឆ្នើម​បំផុត, សមាជិក​បណ្ឌិត្យសភា លេអុនហាដ​ អយល័រ

អយល័រ​បាន​មក​រាជធានី​រុស្ស៊ី​នៅ​ថ្ងៃ ១៧ ឧសភា ១៧២៧។ គាត់​ត្រូវបាន​ដំឡើង​ពី​តំណែង​ដំបូង​ក្នុង​ដេប៉ាតឺម៉ង់​វេជ្ជាសាស្ត្រ​ទៅ​កាន់​តំណែងថ្មី​នៅ​ដេប៉ាតឺម៉ង់​គណិវិទ្យា។ គាត់​ស្នាក់​នៅ​ជាមួយ​ដានីញែល​ប៊ែរនូលី​ ដែល​គាត់​តែង​ធ្វើ​ការ​ជាមួយ​គ្នា​យ៉ាង​ស្និទ្ធស្នាល​។ អយល័រ​រៀនភាសា​រុស្ស៊ី​បាន​ស្ទាត់​ជំនាញ​ប្រើ​ការ​បាន​ ហើយចាប់​ផ្ដើម​ជីវិត​នៅ​​សាំងពេទ័របួគ៌។ គាត់​ក៏​បាន​ធ្វើ​ការងារ​បន្ថែម​ជា​ពេទ្យ​ទាហាន​នៅ​កងនាវា​របស់​រុស្ស៊ី​ផង​ដែរ។ [១០]

បណ្ឌិត្យសភា​នៅ​សាំងពេទ័របួគ៌ បាន​បង្កើត​ឡើង​ដោយមហារាជភេទ័រ ដែល​ទ្រង់​មាន​គោល​បំណង​អភិវឌ្ឍ​វិស័យ​អប់រំ​របស់​រុស្ស៊ី និង​កាត់​បន្ថយ​គម្លាត​ផ្នែក​វិទ្យា​សាស្ត្រ​ជាមួយ​លោក​ខាង​លិច។ ជា​លទ្ធផល ប្រទេស​រុស្ស៊ី​បាន​ក្លាយ​ជា​ទី​ចំណាប់​​អារម្មណ៍​អ្នក​ប្រាជ្ញ​បរទេស​ដូច​ជា​អយល័រ។ បណ្ឌិត្យសភា​មាន​ថវិកា​ដ៏​ច្រើន​លើស​លប់ និង​បណ្ណាល័យ​ដ៏​ធំ​ទូលំ​ទូលាយ​ដែល​បង្កើត​ចេញ​ពី​បណ្ណាល័យ​ផ្ទាល់​ខ្លួន​របស់​ព្រះ​ចៅ​អធិរាជ​ភេទ័រ​ផ្ទាល់ និង​របស់​ពួក​អភិជន។ ចំនួន​សិស្ស​ដ៏​តិចតួច​បំផុត​ត្រូវ​បាន​គេ​ជ្រើសរើស​ឱ្យ​ទៅ​សិក្សា​នៅ​បណ្ឌិត្យសភា​នេះ​ ដើម្បី​កាត់​បន្ថយ​ការងារ​បង្រៀន តែ​បង្កើន​ការងារ​ស្រាវជ្រាវ​វិញ ដូច្នេះ​វា​បាន​ផ្ដល់​ពេល​វេលា​និង​សេរីភាព​សម្រាប់​ធ្វើ​ការ​ស្រាវជ្រាវ​ផ្នែក​វិទ្យាសាស្ត្រ។ []

ឧបការីនី​របស់​បណ្ឌិត្យសភា កាតេរីនទី១ (Catherine) បាន​អនុវត្ត​បន្ត​គោលនយោបាយ​​របស់​ស្វាមី​នាង​ បាន​ស្លាប់​មុន​ពេល​ដែល​អយល័រ​មក​ដល់​។ ពួក​អភិជន​របស់​រុស្ស៊ី​បាន​បង្កើន​ឥទ្ធិពល​របស់​ខ្លួន​ក្នុង​រាជ្យ​របស់​​ភេទ័រ​ទី​២ ដែល​ទើប​តែ​មាន​អាយុ​១២​ឆ្នាំ។ ពួក​អភិជន​បាន​សង្ស័យ​ពី​ពួក​សមាជិក​បណ្ឌិត​សភា​ដែល​ជា​ជន​បរទេស​ ហើយ​ក៏​កាត់​ផ្ដាច់​ការ​ផ្ទត់ផ្គង់​ហិរញ្ញវត្ថុ និង​បង្ក​ជា​ការ​លំបាក​ផ្សេង​ៗ​ដល់​អយល័រ​និង​សហការី​​របស់​គាត់។

ស្ថានភាព​បាន​ប្រសើរ​ជាងមុន​បន្តិច​ក្រោយ​ពេល​ដែល​ភេទ័រ​ទី​២ បាន​ស្លាប់ ហើយអយល័រ​បាន​ឡើង​ឋានៈ​យ៉ាង​ឆាប់​រហ័ស​នៅ​ក្នុង​បណ្ឌិត្យសភា និង​ត្រូវ​បាន​តែងតាំង​ជា​ប្រូហ្វ៊េស្ស៊័ររូបវិទ្យា​​នៅ​ឆ្នាំ​១៧៣១។ ពីរ​ឆ្នាំ​ក្រោយ​មក ដានីញែល​ប៊ែរនូលី ដែល​បាន​ធុញទ្រាន់​នឹង​ភាព​តឹងរ៉ឹង​និង​ភាព​ប្រទូសរ៉ាយ​ដែល​គាត់​បាន​ប្រឈម​មុខ​នៅ​សាំងពេទ័របួគ៌ បាន​ត្រលប់​មក​កាន់​បាហ្សល​វិញ។ អយល័រ​បាន​បន្ត​តំណែង​ពី​គាត់​ ធ្វើ​ជា​ប្រធាន​ដេប៉ាតឺម៉ង់​ផ្នែក​គណិតវិទ្យា​។ [១១]

នៅ​ថ្ងៃ​ទី​៧ មករា ១៧៣៤ គាត់​បាន​រៀបការ​ជាមួយ​ Katharina Gsell (1707–1773), ដែល​ជា​កូនស្រី​របស់​ Georg Gsell, ដែល​ជា​ជាងគំនូរ​មក​បណ្ឌិត្យសភា Gymnasium។[១២] គ្រួសារ​ថ្មី​នេះ​បាន​ទិញ​ផ្ទះ​មួយ​ជាប់​ទន្លេ​នេវ៉ា (Neva)។ ក្នុង​ចំណោម​កូន​របស់​គាត់​ទាំង​១៣​នាក់ មាន​តែ​៥នាក់​តែ​ប៉ុណ្ណោះ​ដែល​អាច​រស់​ដល់​ធំ​បាន។ [១៣]

ជីវិត​នៅ​ប៊ែរឡាំង

ដោយ​ព្រួយ​បារម្ភ​ពី​សង្គ្រាម​ផ្ទៃក្នុង​ដែល​ចេះ​តែ​បន្ត​នៅ​រុស្ស៊ី អយល័រ​បាន​ចាក​ចេញ​ពី​សាំង​ពេទ័រ​បួគ៌ នៅ​ថ្ងៃ​ទី​១៩ មិថុនា ឆ្នាំ​១៧៤១ ដើម្បី​ទៅ​ទទួល​តំណែង​ថ្មី​នៅ​បណ្ឌិត្យសភា​ប៊ែរឡាំង ដែល​ត្រូវ​បាន​ផ្ដល់​ដោយ​ព្រះ​ចៅ​អធិរាជ​ហ្វ្រេឌ្រិច​របស់​រាជាណាចក្រ​ប្រយសិន។ គាត់​រស់​នៅ​អស់​រយៈ​ពេល​២៥​ឆ្នាំ​នៅ​ប៊ែរឡាំង ដែល​នៅ​ទី​នោះ​គាត់​សរសេរ​អត្ថបទ​ផ្សាយ​បាន​ចំនួន៣៨០​អត្ថបទ។ នៅ​ប៊ែរឡាំង គាត់​បាន​បោះពុម្ព​ផ្សាយ​សៀវភៅ​ពីរ​ក្បាល​ដែល​ធ្វើ​ឱ្យ​គាត់​ល្បី​បំផុត៖ Introductio in analysin infinitorum, សៀវភៅ​សរសេរ​ពី​អនុគមន៍​ដែល​បាន​បោះ​ពុម្ព​ផ្សាយ​នៅ​ឆ្នាំ​១៧៤៨ និង Institutiones calculi differentialis,[១៤] ដែល​បាន​បោះ​ពុម្ព​ផ្សាយ​នៅ​ឆ្នាំ​ 1755 ក្រោម​ប្រធានបទ​គណនា​ឌីផេរ៉ង់ស្យែល។[១៥] ក្នុង​ឆ្នាំ​១៧៥៥ គាត់​ត្រូវ​បាន​គេ​បោះឆ្នោត​តែងតាំង​ជា​សមាជិក​បរទេស​នៃ​បណ្ឌិត្យសភា​វិទ្យា​សាស្ត្រ​ស៊ុយអ៊ែដ។

អយល័រ​ត្រូវ​ស្នើ​ឱ្យ​ធ្វើ​ជា​គ្រូ​របស់​ព្រះ​អង្គម្ចាស់ក្សត្រី​នៃ Anhalt-Dessau, ដែល​ត្រូវ​ជា​ក្មួយ​របស់ហ្វ្រេឌ្រិច។ អយល័រ​បាន​សរសេរ​សំបុត្រ​ជាង​២០០​ទៅ​កាន់​នាង, ដែល​សំបុត្រ​ទាំង​នោះ​ក្រោយ​មក​ត្រូវ​បាន​គេ​ចងក្រង​ជា​សៀវភៅ​ដែល​លក់​ដាច់​បំផុត ដែល​មាន​ចំណង​ជើង​ថា សំបុត្រ​របស់​អយល័រ​លើ​មុខវិជ្ជា​ផ្សេង​ៗ​ក្នុង​ទស្សនវិជ្ជា​ធម្មជាតិ​ទៅ​កាន់ព្រះ​អង្គម្ចាស់ក្សត្រី​​របស់​អាល្លឺម៉ង់ (Letters of Euler on different Subjects in Natural Philosophy Addressed to a German Princess)។ សៀវភៅ​នេះ​និយាយ​ពី​ការ​ពន្យល់​បក​ស្រាយ​លើ​មុខវិជ្ជា​ផ្សេង​​ៗ ដែល​ជាប់​ទាក់​ទង​នឹង​រូបវិទ្យា​និង​គណិតវិទ្យា ក៏​ដូច​ជា​ផ្ដល់​នូវ​ការ​យល់​ដឹង​យ៉ាង​ស៊ីជម្រៅ​ទៅលើ​បុគ្គលភាព​របស់​អយល័រ​និង​ជំនឿ​របស់​គាត់​លើ​សាសនា។ សៀវភៅ​នេះ​ក្លាយ​ជា​សៀវភៅ​ដែល​គេ​អាន​ច្រើន​បំផុត ច្រើន​ជាង​សៀវភៅ​ផ្សេង​ទៀត​របស់​គាត់​ទៅ​ទៀត។ សៀវភៅ​នេះ​ត្រូវ​បាន​បោះ​ពុម្ពផ្សាយ​ពាសពេញ​អឺរ៉ុប​និងសហរដ្ឋ​អាមេរិច។ ប្រជាប្រិយភាព​របស់​ 'សំបុត្រ' ទាំង​នេះ បង្ហាញ​ពី​សមត្ថភាព​របស់​អយល័រ​ក្នុង​ទាក់​ទង​ផ្នែក​វិទ្យាសាស្ត្រ​យ៉ាង​មាន​ប្រសិទ្ធភាព​ជា​មួយ​អ្នក​ស្ដាប់​ធម្មតា ដែល​ជា​សមត្ថភាព​ពិសេស​ដ៏​កម្រ​មួយ​សម្រាប់​អ្នក​វិទ្យាសាស្ត្រ។ [១៥]

ទោះ​បី​ជាអយល័រ​បាន​ផ្ដល់​វិភាគទាន​យ៉ាង​សម្បើម​ដល់​កិត្តិយស​របស់​បណ្ឌិត្យសភា​អាល្លឺម៉ង់​យ៉ាង​នេះ​ក្ដី ក៏​គាត់​ត្រូវ​គេ​បង្ខំ​ឱ្យ​ចាក​ចេញពី​ប៊ែរឡាំង​ដែរ។ រឿង​នេះ​មូលហេតុ​ម្យ៉ាង​ ដោយ​សារ​អយល័រ​មិន​សូវ​ត្រូវគ្នា​ជាមួយ​ហ្វ្រេឌ្រិច​ផង ដែល​ចាត់​បាន​ចាត់​ទុក​ថា​អយល័រ​មិន​សូវឆ្លាត, ជា​ពិសេស​បើ​ធៀប​នឹង​រង្វង់​អ្នក​ទស្សនវិទូ​​ដែល​ស្តេច​អាល្លឺម៉ង់​បាន​នាំ​យក​មក​បណ្ឌិត្យសភា​។ វ៉ុលទែរ​ជា​មនុស្ស​ម្នាក់​ក្នុង​ចំណោម​ទស្សនវិទូ​របស់​ហ្វ្រេឌ្រិច​ជួល​មក ហើយ​វ៉ុលទែរ​ទទួល​បាន​នូវ​តំណែង​របស់​ខ្ពង់ខ្ពស់​មួយ​នៅ​ក្នុង​រង្វង់​សង្គម​ស្ដេច​។ អយល័រ មនុស្ស​កាន់​ធម៌​អាថ៌​ធម្មតា និង​ជា​អ្នក​ធ្វើ​ការ​ធ្ងន់ ក្លាយ​ជា​វត្ថុ​សាមញ្ញ​ក្នុង​ជំនឿ​និង​រស​ជាតិ​របស់​ស្ដេច។ អយល័រ​បាន​ប្រឆាំង​នឹង​វ៉ុលទែរ​ក្នុង​ផ្លូវ​ច្រើន​យ៉ាង។ អយល័រ​ខ្សោយ​ខាង​ភាសា​ការទូត ហើយចង់​តែ​​ប្រកែក​គ្នា​ពី​ប្រធានបទ​ដែល​គាត់​ដឹង​តិច​តួច បាន​ក្លាយ​ជា​ផ្ទាំង​ស៊ីប​របស់​​វ៉ុលទែរ។ [១៥] ហ្វ្រេឌ្រិចបាន​សម្ដែង​នូវ​ការ​ខក​ចិត្ត​ចំពោះ​សមត្ថភាព​វិស្វកម្ម​របស់​អយល័រ​ថា ៖

ទំព័រគំរូ:Cquote

រូបអយល័រ​ ក្នុង​ឆ្នាំ 1753 ដោយEmanuel Handmann។ រូប​នេះ​គេ​អះ​អាង​ថាអយល័រ​មាន​​បញ្ហា​គ្រាប់​ភ្នែក​ខាង​ស្ដាំ និង​ប្រហែល​ជា​ជំងឺ strabismus។ ភ្នែក​ខាង​ឆ្វេង​​មើល​ទៅ​ធម្មតា ដែល​ក្រោយ​មក​ត្រូវ​ប៉ះពាល់​ដោយ​ជំងឺ​​ភ្នែក​ឡើង​បាយ។ [១៦]

ពិការភាព​ភ្នែក

ភ្នែក​របស់​អយល័រ​បាន​ខូចខាត​យ៉ាង​ខ្លាំង​ក្នុង​អំលុង​អាជីព​ជា​គណិតវិទូ​របស់​គាត់​។ បីឆ្នាំ​បន្ទាប់​គាត់​ធ្លាក់​ខ្លួន​ឈឺ​ស្ទើរ​ស្លាប់​នៅ​ឆ្នាំ​១៧៣៥ ភ្នែក​ខាង​ស្ដាំ​របស់​គាត់​ស្ទើរ​តែ​ខ្វាក់ ប៉ុន្តែ​គាត់​បានបន្ទោស​បញ្ហា​នេះ​ថា​មកការ​លំបាក​ក្នុង​ការ​ធ្វើ​ផែនទី​នៅ​បណ្ឌិតសភា​សាំងពេទ័របួក៌​ទៅ​វិញ។ ភ្នែក​ខាង​ស្ដាំរបស់​គាត់​នេះ បាន​ខូច​កាន់​ធ្ងន់​ធ្ងរ​ទៅ​ៗ នៅ​ពេល​គាត់​ស្នាក់​នៅ​ប៊ែរឡាំង រហូត​ដល់​ហ្វ្រេឌ្រិចបានហៅ​គាត់​សាក្លប (Cyclop)(មាន​ន័យ​ថា អាយក្ស​ភ្នែក​មួយ)។ ក្រោយ​មក​ទៀត អយល័រ​បាន​កើត​ជំងឺ​ភ្នែក​ឡើង​បាយ​នៅ​ភ្នែក​ខាង​ឆ្វេង​ដែល​នៅ​ល្អ​របស់​គាត់ ដែល​ជំងឺ​នេះ​ធ្វើ​ឱ្យ​គាត់ស្ទើរ​តែ​ក្លាយ​ជា​មនុស្ស​ខ្វាក់​ទាំង​ស្រុង​ទៅ​ហើយ នៅ​ប៉ុន្មាន​សប្ដាហ៍​ក្រោយ​ពី​ជំងឺ​នេះ​ត្រូវ​បាន​គេ​រក​ឃើញ​នៅ​ឆ្នាំ​១៧៦៦។ បើ​ទោះ​ជា​យ៉ាង​នេះ​ក្ដី ស្ថានភាព​របស់​គាត់​មិន​មាន​ឥទ្ធិពល​អ្វី​ខ្លាំង​ក្លា​ដល់​ទិន្នផល​ការងារ​របស់​គាត់​ឡើយ ព្រោះ​គាត់​មាន​សមត្ថភាព​គណនា​មាត់​ទទេ​ពូកែ និង​ពូកែចង​ចាំ​រូបភាព។ ឧទាហរណ៍ អយល័រ​អាច​សូត្រ​កំណាព្យ​របស់ Aenid របស់ Virgil បាន​ពី​ដើម​ដល់​ចប់​ដោយ​គ្មាន​ទាក់ ហើយ​គ្រប់​ទំព័រ​ទាំង​អស់​នៃ​សៀវភៅ​នេះ​ គាត់​អាច​ប្រាប់​បាន​ថា​បន្ទាត់​ណា​នៅ​ខាង​មុខ បន្ទាត់​ណា​នៅ​ខាង​ក្រោយ​បាន។ ដោយ​មាន​ជំនួយ​ពី​ស្មេរ​របស់​គាត់ ស្នាដៃ​របស់​អយល័រ​នៅ​លើ​វិស័យ​ផ្សេង​ៗតាម​ពិត​បាន​កើន​ឡើង​ទៅ​វិញ​ទេ។ គាត់​សរសេរ​បាន​ជាមធ្យម​នូវ​ភេភ័រ​គណិតវិទ្យា​មួយ​ជា​រៀងរាល់​សប្ដាហ៍​ក្នុង​ឆ្នាំ​១៧៧៥។[]

ការ​ត្រលប់​ទៅ​កាន់​រុស្ស៊ី​វិញ

ស្ថានភាព​នៅ​រុស្ស៊ី​បាន​ប្រសើរ​ឡើង​វិញ​បន្ទាប់​ពី​ការ​ឡើង​គ្រង​រាជ្យ​របស់​មហារាជCatherine ហើយ​នៅ​ឆ្នាំ​១៧៦៦ អយល័រ​បាន​យល់​ព្រម​តាម​ការ​អញ្ជើញ​​ត្រលប់​ទៅបណ្ឌិត្យសភាសាំងពេទ័របួគ៌​វិញ ហើយ​បាន​រស់​នៅ​រុស្ស៊ី​រហូត​ដល់​ជីវិត​ចុងក្រោយ។ ការ​ស្នាក់​នៅ​លើក​ទី​២​របស់​គាត់​នៅ​រុស្ស៊ី​នេះ គាត់​ជួប​ប្រទះ​នូវ​គ្រោះ​អាក្រក់​ដ៏​គួរ​ឱ្យ​រន្ធត់។ អគ្គិភ័យ​នៅ​សាំង​ពេទ័របួគ៌​ក្នុង​ឆ្នាំ​១៧៧១ បាន​បំផ្លាញ​ផ្ទះ​របស់​គាត់ និង​ស្ទើរ​តែ​បំផ្លាញ​ជីវិត​របស់​គាត់​ផង​ដែរ។ ក្នុង​ឆ្នាំ​១៧៧៣ គាត់​បាន​បាត់​បង់ ​Katharina ប្រពន្ធ​របស់​គាត់ក្នុង​អាយុ​៤០​ឆ្នាំ។ ៣​ឆ្នាំ​ក្រោយ​មក គាត់​បាន​រៀបការ​ជាមួយ​ប្អូន​ស្រី​ចុង​របស់​ប្រពន្ធ​ដើម​គាត់​គឺ Salome Abigail Gsell (1723–1794).[១៧] អាពាហ៍​ពិពាហ៍​បានឋិតឋេរ​រហូត​ដល់​ថ្ងៃ​គាត់​ស្លាប់។

នៅ​ថ្ងៃ ១៨ កញ្ញា ១៧៨៣ បន្ទាប់​ពី​ទទួល​ទាន​អាហារ​ថ្ងៃ​ត្រង់​ជាមួយ​គ្រួសារ​របស់​គាត់ ក្នុង​ពេល​សន្ទនា​ជាមួយ​Anders Lexell អំពី​របក​គំហើញ​ថ្មីនៃ​ទ្វីប​អ៊ុយរ៉ានុសនិង​​គន្លង​របស់​វា, អយល័រ​បាន​កើត​ជំងឺ​ដាច់​សរសៃ​ឈាម​ក្នុង​ខួរ​ក្បាល ហើយ​បាន​ស្លាប់​​ប៉ុន្មាន​ម៉ោង​ក្រោយ​មក។ [១៨] ដំណឹងមរណភាព​ខ្លី​មួយ​សម្រាប់​បណ្ឌិត​សភារុស្ស៊ី ​ត្រូវ​បាន​សរសេរ​ដោយJacob von Shtelin និង​ពាក្យ​សរសើរ​ដ៏​ក្បោះក្បាយ​មួយ[១៩] ត្រូវ​បាន​សរសេរ​និង​អាន​ក្នុង​ពិធី​រំលឹក​វិញ្ញាណក្ខន្ធ​ដោយ​គណិវិទួ​រុស្ស៊ី Nicolas Fuss, ដែល​ជាសាវ័ក​មួយ​របស់​អយល័រ។ ក្នុង​ពាក្យ​សរសើរ​សម្រាប់​បណ្ឌិត្យសភា​បារាំង ដែល​សរសេរ​ដោយគណិតវិទូ​និង​ទស្សនវិទូ​បារាំងMarquis de Condorcet, គាត់​បាន​សរសេរ​ថា

ទំព័រគំរូ:Cquote

គាត់​ត្រូវ​បាន​គេ​បញ្ចុះ​នៅ​ជាប់​ផ្នូរ​របស់ Katharina នៅវិមានសព Smolensk Lutheran នៅកោះ​ Vasilievsky។ ក្នុង​ឆ្នាំ​១៧៨៥ បណ្ឌិត្យសភា​វិទ្យាសាស្ត្រ​បាន​ដាក់​តាំង​រូប​សំណាក​លេអុនហាដ​អយល័រ​នៅ​ជាប់​នឹង​កៅអី​របស់​ប្រធាន​បណ្ឌិត្យសភា។ ក្នុង​ឆ្នាំ​១៨៣៧ បណ្ឌិត្យសភា​វិទ្យាសាស្ត្រ​បាន​​ដាក់​ប្លាក​មុខ​ផ្នូររបស់​គាត់ ហើយ​នៅ​ឆ្នាំ​១៩៥៦ ដែល​ត្រូវ​ជា​ខួប​កំណើត​ទី​២៥០​របស់​អយល័រ ផ្នូរ​របស់​គាត់​ត្រូវ​បាន​គេ​ប្ដូរ​ទៅ​ដាក់​នៅវិមានសព​សតវត្សរ៍​ទី១៨ នៅ Alexander Nevsky Lavraវិញ។ [២០]

ផ្នូរ​របស់​អយល័រ នៅ Alexander Nevsky Lavra

វិភាគទាន​ក្នុង​វិស័យគណិតវិទ្យា​និង​រូបវិទ្យា

ស្នាដៃ​របស់​អយល័រ​មាននៅ​ក្នុង​​ស្ទើរ​គ្រប់​វិស័យ​នៃ​គណិតវិទ្យា៖ ធរណីមាត្រ គណនា​មិន​កំណត់ ត្រីកោណមាត្រ ពីជគណិត និង​ទ្រឹស្ដី​នព្វន្ត ព្រម​ទាំង​រូបវិទ្យា​នៃ​មជ្ឈដ្ឋាន​ជាប់​ ទ្រឹស្ដី​ព្រះ​ចន្ទ​និង​ផ្នែក​ផ្សេង​ទៀត​នៃ​រូប​វិទ្យា។ ​


និមិត្តសញ្ញា​គណិតវិទ្យា

អយល័រ​បាន​បង្កើត​និង​ធ្វើឱ្យ​និមិត្តសញ្ញា​មួយ​ចំនួន​ពេញ​និយម​ប្រើ​តាម​រយៈ​សៀវភៅ​ជា​ច្រើនរបស់​គាត់​ដែល​បាន​ផ្សព្វផ្សាយ​យ៉ាង​ទូលំទូលាយ។ គួរឱ្យ​កត់​សម្គាល់​ជាង​គេ​ គឺ​គាត់​ជា​អ្នក​បង្កើត​សញ្ញាអនុគមន៍​ ដែល​សរសេរ​ក្រោម​រាង​ជា  f(x) តំណាង​ឱ្យ​អនុគមន៍​  f អនុវត្ត​លើ​អថេរ  x ។ គាត់​ជា​អ្នក​បង្កើត ពាក្យ​តំណាង​អនុគមន៍​ត្រីកោណមាត្រ, ប្រើ  e តាង​គោល​លោការីត​ធម្មជាតិ (ដែល​ជួនកាល​គេ​ហៅ​ថា​ចំនួន​អយល័រ), ប្រើ​អក្សរ​ក្រិច​ស៊ិចម៉ា  Σ តាង​ឱ្យ​ផលបូក​ និង អក្សរ​  i តាង​ឱ្យ​ឯកតា​ប្រឌិត​ក្នុង​ចំនួន​កុំផ្លិច។[២១] ការ​ប្រើ​អក្សរ​  π តាង​ឱ្យ​ផលធៀបបរិមាត្រ​រង្វង់​ធៀបនឹង​អង្កត់​ផ្ចិត​រង្វង់ ក៏​អយល័រ​ជា​អ្នក​នាំ​ឱ្យមាន​ការ​ពេញ​និយម​​ប្រើ​ដែរ, តែ​និមិត្តសញ្ញា​នេះ​មិនមែន​គាត់​ជា​បង្កើត​ឱ្យ​ប្រើ​មុន​គេ​ឡើយ។[២២]

វិភាគ

ការ​អភិវឌ្ឍ​នៃ​ការ​គណនា​មិន​កំណត់​កំពុង​តែឋិត​នៅ​ក្នុង​ដំណាក់កាល​​ពុះ​កញ្ជ្រោល​ក្នុង​វិស័យ​ស្រាវជ្រាវ​ផ្នែក​គណិត​វិទ្យា​នា​សតវត្សរ៍​ទី​១៨ ហើយ​ត្រកូលប៊ែរនូលី ដែល​ជា​មិត្តភក្តិ​របស់​អយល័រ ជា​អ្នក​មាន​ចំណែក​ដ៏​ធំ​បំផុត​ក្នុង​ការ​ធ្វើ​ឱ្យ​វិស័យ​នេះ​រីក​ចម្រើន​បំផុត។ ដោយ​សារ​ឥទ្ធិពល​របស់​ត្រកូល​នេះ ការ​ស្រាវជ្រាវ​ផ្នែក​គណិត​គណនា​បាន​ក្លាយ​ជា​ប្រធានបទ​ចម្បង​សម្រាប់​អយល័រ។ បើ​ទោះ​បី​ជា​សម្រាយ​បញ្ជាក់​ខ្លះ​របស់អយល័រ មិន​ត្រូវ​បាន​ទទួល​ស្គាល់​ដោយ​វិធី​គណិត​ទំនើប​ស្មុគស្មាញ​ក៏​ដោយ[២៣] ក៏​គំនិត​របស់​អយល័រ​បាន​ជួយ​ធ្វើ​ឱ្យ​មាន​ការ​រីក​ចម្រើន​ដល់​ផ្នែក​​នេះ​ជា​ខ្លាំង។ ភាព​ល្បីល្បាញ​របស់​អយល័រ​នៅ​ក្នុង​គណិតវិភាគ​គឺ​ការ​បាន​ប្រើ​យ៉ាង​ញឹក​ញាប់​និង​បាន​អភិវឌ្ឍ​ស៊េរី​ស្វ័យគុណ​គឺការ​បំបែក​​អនុគមន៍​មួយ​ជា​តួ​ជា​ច្រើន​មិន​កំណត់​បូក​ចូល​គ្នា ដូចជា

ex=n=0xnn!=limn(10!+x1!+x22!++xnn!).

ជា​ពិសេស​នោះ អយល័រ​បាន​ស្រាយ​បញ្ជាក់តាម​វិធី​ផ្ទាល់​នូវ​ការបំបែក​ជា​ស៊េរី​ស្វ័យគុណ​នៃ e និង​អនុគមន៍​តង់សង់​ច្រាស​។ (ការ​ស្រាយ​បញ្ជាក់​តាម​វិធី​មិន​ផ្ទាល់​​តាម​រយៈវិធី​​ស៊េរី​ស្វ័យគុណ​ច្រាស ត្រូវ​បានធ្វើ​​ឡើង​ជា​ដំបូង​ដោយ​ញូតុន​និង​ឡាយប៍​នីត(Leibniz) ក្នុង​រវាង​ឆ្នាំ​១៦៧០ និង ១៦៨០។) គាត់​បាន​ប្រើ​ស៊េរី​ស្វ័យ​គុណ​ដើម្បី​ដោះស្រាយ​ចំណោទ​បាហ្សល (Bazel) ដ៏​ល្បី​ល្បាញ​ក្នុង​ឆ្នាំ​១៧៣៥ (ហើយ​គាត់​បាន​ផ្ដល់​អំណះអំណាង​បន្ថែម​កាន់​តែ​ច្បាស់លាស់​ជាង​មុន​នៅ​ឆ្នាំ​១៧៤១):[២៣]

n=11n2=limn(112+122+132++1n2)=π26.


បំណកស្រាយ​រូបមន្ត​អយល័រ​តាម​វិធី​ធរណីមាត្រ

អយល័រ​បាន​ណែនាំ​ការ​ប្រើប្រាស់​អនុគមន៍​អ៊ិចស្ប៉ូណង់ស្យែល និង​លោការីត​នៅ​ក្នុង​បំណក​ស្រាយ​បែប​វិភាគ។ គាត់​បាន​រក​ឃើញ​វិធី​សរសេរ​អនុគមន៍​លោការីត​ដោយ​ប្រើ​ស៊េរី​ស្វ័យគុណ ហើយ​គាត់​បាន​កំណត់​ប្រកប​ដោយ​ជោគជ័យ​នូវ​លោការីត​នៃ​ចំនួន​អវិជ្ជមាន​និង​កុំផ្លិច ដូច្នេះ​ហើយ​បាន​ពង្រីក​ដែន​កំណត់ប្រើប្រាស់​នៃ​លោការីត​ក្នុង​គណិតវិទ្យា។[២១] គាត់​ក៏​បាន​កំណត់​នូវ​អនុគមន៍​អ៊ិចស្ប៉ូណង់ស្យែល​សម្រាប់​ចំនួន​កុំផ្លិច​ផង​ដែរ និង​បាន​រក​ឃើញ​ទំនាក់ទំនង​នៃ​អនុគមន៍​អ៊ិចស្ប៉ូណង់ស្យែល​ជាមួយ​នឹង​អនុគមន៍​ត្រីកោណ​មាត្រ។ សម្រាប់ចំនួន​ពិត​φមួយ រូបមន្ត​អយល័រ​ចែង​ថា អនុគមន៍​អ៊ិចស្ប៉ូណង់ស្យែល​កុំផ្លិច​ផ្ទៀងផ្ទាត់

eiφ=cosφ+isinφ.

ករណី​ពិសេស​នៃ​រូបមន្ត​ខាង​លើ​ត្រូវ​បាន​គេ​ស្គាល់​ថា​ជា​ឯកលក្ខណភាព​អយល័រ

eiπ+1=0

ដែល​លោក​រីឆាត​ហ្វេយម៉ាន​(Richard Feynman) បាន​ហៅ​ថា​រូបមន្ត​ដ៏​ពិសេស​បំផុត​ក្នុង​គណិតវិទ្យា ព្រោះ​ក្នុង​រូបមន្ត​នេះ​គេ​ប្រើ​តែ​សញ្ញាបូក​ សញ្ញាគុណ​​ អ៊ិចស្ប៉ូណង់ស្យែល​ និង​សមភាព​តែម្ដង​គត់​ ហើយ​ប្រើ​តែម្ដងគត់​​នូវ​មេគុណ 0, 1, e, i និង n ។[២៤] ក្នុង​ឆ្នាំ១៩៨៨ អ្នក​អាន​របស់ ទស្សនាវដ្ដី Mathematical Intelligencer បាន​បោះឆ្នោត​រូបមន្ត​ជា​រូបមន្ត​គណិត​វិទ្យា​ស្អាត​បំផុត​ជា​និរន្តរ៍។ [២៥] ជាសរុប អយល័រ​ជា​ម្ចាស់​នៃ​រូបមន្ត​ចំនួន​បី​ក្នុង​ចំណោម​រូបមន្ត​គណិត​វិទ្យា​ទាំង​ប្រាំ​លើ​គេ​នៅ​ក្នុង​ការ​បោះឆ្នោត​នោះ។ [២៥]

រូបមន្ត​ដឺម័រ ជា​វិបាក​ផ្ទាល់​នៃ រូបមន្ត​អយល័រ

ជាបន្ថែម អយល័រ​បាន​បង្កើត​ទ្រឹស្ដី អនុគមន៍​មិន​ពីជគណិត (transcendental function) លំដាប់ខ្ពស់ ដោយ​បង្កើត​អនុគមន៍​​ហ្កាម៉ា និង​បាន​បង្កើត​វិធី​ថ្មី​ដើម្បី​ដោះ​ស្រាយ​សមីការ​ដឺក្រេ​ទី​បួន។ គាត់​ក៏​បាន​រក​ឃើញ​វិធី​ដើម្បី​គណនា​អាំងតេក្រាល​មាន​លីមីត​កុំផ្លិច​ផង​ដែរ ដែល​បាន​ជំនួយ​ដល់ការ​អភិវឌ្ឍ​នៃ​ការ​វិភាគ​កុំផ្លិច​ទំនើប និង​បាន​បង្កើត​គណិត​គណនា​នៃ​អថេរ​ ក្នុង​នោះ​មាន​សមីការ​អយល័រ​-ឡាក្រង់​ដ៏ល្បី​ល្បាញ។​

អយល័រ​ក៏​ជា​អ្នក​ផ្ដើម​គំនិត​ប្រើ​ប្រាស់​វិធី​វិភាគ​ដើម្បី​ដោះ​ស្រាយ​ចំណោទ​ទ្រឹស្ដី​នព្វន្ត​ផង​ដែរ។ ក្នុង​ការងារ​នោះ គាត់​បាន​បង្រួបបង្រួម​មែកធាង​គណិត​ពីរ​ដែល​បែក​ពីគ្នា ហើយ​បាន​បង្កើត​វិស័យ​ស្រាវជ្រាវ​ថ្មី​មួយគឺ ទ្រឹស្ដី​នព្វន្ត​វិភាគ។​​ ក្នុង​វិស័យ​ថ្មី​នៃ​គណិតវិទ្យា​នេះ អយល័រ​បាន​បង្កើត​ទ្រឹស្ដី​នៃស៊េរី​អ៊ីពែរ​ធរណីមាត្រ, ស៊េរី-q, អនុគមន៍​ត្រីកោណមាត្រ​អ៊ីពែរបូលិច និង​ទ្រឹស្ដី​វិភាគ​នៃ​ប្រភាគ​ជាប់​ទូទៅ។ ឧទាហរណ៍​ គាត់​បាន​ស្រាយ​បញ្ជាក់​ពី​ភាព​មិន​កំណត់​នៃ​ចំនួន​បឋម ដោយប្រើ​ភាព​រីក​នៃ ស៊េរី​អាម៉ូនិច ហើយ​គាត់​បាន​ប្រើ​ប្រាស់​វិធី​វិភាគ​ដើម្បី​ស្វែង​យល់​ពី​របាយ​នៃ​ចំនួន​បឋម។​ ស្នាដៃ​អយល័រ​ក្នុង​វិស័យ​នេះ​បាន​ធ្វើ​ឱ្យ​រីកចម្រើន​ដល់​ទ្រឹស្ដីបទ​នៃ​ចំនួន​បឋម[២៦]

ទ្រឹស្ដីនព្វន្ត​

ចំណាប់​អារម្មណ៍​របស់​អយល័រ​លើ​ទ្រឹស្តី​នៃ​ចំនួន​អាច​បណ្ដាលមក​ពី​ឥទ្ធិពល​របស់​ Christian Goldbach ដែល​ជា​មិត្តភក្ដិ​នៅ​បណ្ឌិត្យសភា​សាំង​ភីធ័រ​ស្ប៊័ក៌។ ការងារ​ដំបូង​ៗ​ភាគ​ច្រើន​របស់​អយល័រ​លើ​ទ្រឹស្ដី​នព្វន្ត មាន​គោលការណ៍​ផ្អែក​លើ​ទ្រឹស្តី​នានា​របស់​ព្យែរ​ដឺ​ភែម៉ា។ អយល័រ​បាន​អភិវឌ្ឍ​គំនិត​ខ្លះ​របស់​ភែម៉ា ហើយ​បាន​បក​ស្រាយ​រក​កំហុស​ក្នុង​ការ​ទស្សន៍ទាយ(conjecture) ​ខ្លះ​ៗ​របស់​ភែម៉ា​។

អយល័រ​បាន​ភ្ជាប់​លក្ខណៈ​នៃ​របាយ​ចំនួន​បឋម​ទៅ​នឹង​គណិត​វិភាគ។ គាត់​បាន​បង្ហាញ​ថា ផលបូក​នៃ​ចម្រាស​របស់​ចំនួន​បឋម​ជា​ស៊េរី​រីក។ ក្នុង​ការ​បក​ស្រាយ​នោះ​ គាត់​បាន​រក​ឃើញ​​ពីការ​ទាក់ទង​គ្នា​រវាង​អនុគមន៍​ហ្សែតា​រីម៉ាន់ និងចំនួន​បឋម, ទំនាក់ទំនង​នេះ​គេ​បាន​ដាក់​ឈ្មោះ​ថា​​រូបមន្ត​ផលគុណ​អយល័រ​សម្រាប់​អនុគមន៍​ហ្សែតា​រីម៉ាន់។

អយល័រ​បាន​ស្រាយ​បញ្ជាក់​ឯកលក្ខណភាព​ញូតុន, កូនទ្រឹស្ដីបទ​ភែម៉ា, ទ្រឹស្ដីបទ​ភែម៉ានៃ​ផល​បូក​ចំនួន​ការេ​ពីរ ហើយ​គាត់​បាន​ផ្ដល់​វិភាគ​ទាន​យ៉ាង​សម្បើម​ដល់​ទ្រឹស្ដី​បទ​ការេ​បួន​របស់​ឡាក្រង់​។ គាត់​ក៏​បាន​បង្កើត​អនុគមន៍​តូស្ហិន  ϕ(n) ដែល​ស្មើ​នឹង​ចំនួន​​នៃចំនួន​គត់​វិជ្ជមាន​ដែល​តូច​ជាង​ឬ​ស្មើ​ចំនួន​គត់  n ហើយ​ដែល​បឋម​នឹង  n ។ ​ដោយ​ប្រើ​លក្ខណៈ​នេះ គាត់​បាន​ធ្វើ​សាមញ្ញភាវូបនីយកម្ម​កូន​ទ្រឹស្តី​បទ​ភែម៉ា ឱ្យ​ក្លាយ​ជា​ទ្រឹស្ដី​បទ​ថ្មី​ដែល​ហៅ​ថា​ទ្រឹស្ដី​បទ​អយល័រ។ គាត់​ក៏​ផ្ដល់​វិភាគ​ទាន​យ៉ាង​សម្បើម​ផង​ដែរ​​ដល់​ទ្រឹស្ដី​បទ​នៃ​សម្បុណ្ណលេខ (perfect number) ដែល​ទ្រឹស្ដី​នៃចំនួន​នេះ​បាន​ធ្វើ​ឱ្យ​គណិតវិទូ​ចាប់​អារម្មណ៍​ជា​ខ្លាំង​​តាំង​ពី​សម័យ​អឺគ្លីដ​មក។ អយល័រ​បាន​អភិវឌ្ឍ​ទ្រឹស្ដី​នៃ​ចំនួន​បឋម ហើយ​បាន​ធ្វើ​ការ​ស្មាន​ទុក​នូវ​ទ្រឹស្ដី​នៃភាព​ច្រាសកាដ្រាទិច។ គោលការណ៍​ទាំង​ពីរ​នេះ​ត្រូវ​បាន​គេ​ចាត់​ទុក​ជា​ទ្រឹស្ដីបទ​គ្រឹះ​នៃ​ទ្រឹស្ដី​នព្វន្ត ហើយ​គំនិត​របស់​អយល័រ​បាន​បើក​ជា​ផ្លូវ​សម្រាប់​ការងារ​របស់​ខាល​ហ្វ្រ៊ីឌ្រិច​គ្ហោស។ [២៧]

នៅឆ្នាំ​១៧៧២ អយល័រ​បាន​បង្ហាញ​ថា  2311=2147483647 ជា​ចំនួន​បឋម​មែរសែន។ ចំនួន​បឋម​នេះ​នៅ​តែ​ជា​ចំនួន​បឋម​ធំ​បំផុត​ដែល​គេ​ស្គាល់​រហូត​ដល់​ឆ្នាំ​១៨៦៧។[២៨]

ទ្រឹស្ដីបទ​ក្រាប

ផែនទី​ក្រុង​ឃើនិច្សប៊ែក៌ នៅ​សម័យ​អយល័រ​បង្ហាញ​ពីតាំង​របស់​ពិត​ប្រាកដ​របស់​ស្ពាន​ទាំង​ប្រាំ​ពីរ

ក្នុង​ឆ្នាំ​១៧៣៦ អយល័រ​បាន​ដោះ​ស្រាយ​ចំណោទ​មួយ​ដែល​គេ​ស្គាល់​ថា​ស្ពាន​ទាំង​ប្រាំ​ពីរ​នៃ​ឃើនិច្សប៊ែក៌[២៩] ក្រុង​ឃើនិច្សប៊ែក៌​ នៃ​រាជាណាចក្រ​ប្រយសិន បាន​តាំង​នៅ​មាត់​ទន្លព្រីគឹល ហើយ​មាន​កោះ​ធំៗ​ពីរ​ ដែល​តភ្ជាប់​គ្នា​នឹង​ដី​គោក​ដោយ​ស្ពាន​ចំនួន​៧។ ចំណោទ​នោះ​គឺ​ថា​តើ​គេ​អាច​ដើរ​កាត់​ស្ពាន​នីមួយៗ​គ្រប់​ស្ពាន​ និង​តែ​ម្ដង​គត់ ហើយ​ដើរ​មក​ដល់​កន្លែង​ដើម​វិញ​បាន​ដែរ​ឬ​ទេ?។ អយល័រ​បាន​រក​ឃើញ​ថា គេ​មិន​អាច​ធ្វើ​ដូច្នេះ​បាន​ទេ៖ ក្នុង​ករណី​នេះ​ គេ​មិន​អាចរក​​បាន​នូវ សៀគ្វី​អយល័រ​បាន​ឡើយ។ ដំណោះស្រាយ​នេះ​ត្រូវ​បាន​គេ​ចាត់ទុក​ថា​ជា​ទ្រឹស្ដី​ក្រាប​ដំបូង​គេ​ ហើយ​ជា​ពិសេស​ជា​ទ្រឹស្ដី​ទីមួយ​នៃ​ទ្រឹស្ដី​ក្រាប​ប្លង់[២៩]

អយល័របាន​រក​ឃើញ​រូបមន្ត VE+F=2 ដែល​ភ្ជាប់​ទំនាក់ទំនង​ចំនួន​កំពូល, ជ្រុង និងមុខ​របស់​ពហុមុខ​ប៉ោង​,[៣០] ហើយ​រូបមន្ត​នេះ​​កែ​សម្រួល​មក​សម្រាប់​ប្រើ​ក្នុង​ក្រាប​ប្លង់​បាន​ដែរ។ ចំនួន​ថេរ​នៅ​ក្នុង​រូបមន្ត​នេះ​ត្រូវ​បាន​គេ​ស្គាល់​ថា​ជា​លក្ខណៈ​អយល័រ​សម្រាប់​ក្រាប(ឬ​វត្ថុ​គណិត​ផ្សេង​ទៀត), ហើយ​ជាប់​ទាក់​​ទង​ទៅ​នឹង​genus នៃ​វត្ថុ។[៣១] ការ​សិក្សា​និង​ការ​ធ្វើ​ឱ្យ​រូបមន្ត​នេះ​កាន់​តែ​ទូលំទូលាយ​ជាងមុន ជាពិសេស​ដោយ​លោក​ Cauchy[៣២] និង L'Huillier,[៣៣] គឺ​ជា​ប្រភព​នៃ​តូប៉ូឡូស៊ី

គណិតវិទ្យា​អនុវត្តន៍

ជោគជ័យដ៏​សម្បើម​បំផុត​​ខ្លះ​របស់​អយល័រ​គឺ​ភាព​ជោគជ័យ​ក្នុង​ការ​ដោះស្រាយ​បញ្ហា​ក្នុង​ពិភព​លោក​ជាក់​ស្ដែង​តាម​វិភាគ និង​ការ​អធិប្បាយ​ទៅ​លើ​ការ​អនុវត្ត​ជា​លេខ​នៃ​ចំនួន​ Bernoulli, ស៊េរី​ Fourier, ដ្យាក្រាម​វ៉ែន (Venn), ចំនួន​អយល័រ, ថេរ  e, ប្រភាគ​ជាប់ និង​អាំងតេក្រាល។ គាត់​បាន​ធ្វើ​អាំងតេក្រាល​សមីការ​ឌីផេរ៉ង់ស្យែល Leibniz ដោយ​ប្រើ​វិធី​ភ្លុចស្យុង​របស់​ញូតុន និង​បាន​បង្កើត​វិធី​ងាយស្រួល​ប្រើ​ដែល​គេ​អាច​យក​ទៅ​ប្រើ​ក្នុង​ការ​ដោះស្រាយ​បញ្ហា​រូបវិទ្យា។ គាត់​បាន​ធ្វើ​ឱ្យ​រីក​ចម្រើន​ផ្នែក​គណនា​តម្លៃ​ប្រហែល​នៃ​អាំងតេក្រាល ដោយ​បង្កើត​វិធី​ប្រហែល​ដែល​គេ​ស្គាល់​សព្វ​ថ្ងៃ​នេះ​ថា​ជាវិធី​តម្លៃ​ប្រហែល​អយល័រ។ វិធី​តម្លៃ​ប្រហែល​ដែល​ល្បី​បំផុត​គឺ វិធី​អយល័រ និង រូបមន្ត​អយល័រ​-ម៉ាក់​ឡូរ៉ាំង។ គាត់​បាន​ជួយ​សម្រួល​ដល់​ការ​ប្រើ​ប្រាស់​សមីការ​ឌីផេរ៉ង់ស្យែល ជា​ពិសេស​បាន​បង្កើត ថេរ​អយល័រ-ម៉ាសឈែរ៉ូនី

γ=limn(1+12+13+14++1nln(n)).

ការ​បង្កើត​ដ៏​ចម្លែក​មួយ​របស់​អយល័រ​គឺ​អនុវត្ត​​គណិតវិទ្យា​ក្នុងតន្ត្រី។ ក្នុង​ឆ្នាំ​១៧៣៩ គាត់​បាន​សរសេរ Tentamen novae theoriae musicae, ដោយ​សង្ឃឹម​ថានឹង​អាច​បញ្ចូល​​ទ្រឹស្តី​តន្ត្រី​​ទៅ​ក្នុង​ផ្នែក​មួយ​នៃ​គណិតវិទ្យា។ ការងារ​របស់​គាត់​មួយ​នេះ​មិន​បាន​ទទួល​នូវ​ការ​ចាប់​អារម្មណ៍​ឱ្យ​បាន​ទូលំទូលាយ​នោះ​ទេ ហើយ​ត្រូវ​បាន​គេ​ចាត់​ទុក​ថា​គណិតវិទ្យា​ពេក​សម្រាប់​តន្ត្រីករ និង​ពោរពេញ​ដោយ​តន្ត្រី​ពេក​សម្រាប់​គណិតវិទូ។[៣៤]

រូបវិទ្យា​និង​តារាវិទ្យា

អយល័រ​បាន​ជួយ​អភិវឌ្ឍ​សមីការ​ធ្នឹមអយល័រ–ប៊ែរនូលី, ដែល​បាន​ក្លាយ​ជា​របក​គំហើញ​ដ៏​សម្បើម​មួយ​ស្រាប់​វិស័យ​វិស្វកម្ម។ ក្រៅ​ពី​បាន​អនុវត្ត​ឧបករណ៍​វិភាគ​របស់​គាត់​ប្រកប​ដោយជោគជ័យ​ក្នុង មេកានិច​ក្លាស្ស៊ិច, អយល័រ​បាន​អនុវត្ត​តិចនិច​ទាំង​នេះ​ទៅ​ក្នុង​បញ្ហា​តារាវិទ្យា​ថែម​ទៀត។ ការងារ​របស់​គាត់​លើ​ផ្នែក​តារាវិទូ​ត្រូវ​បាន​ទទួល​ស្គាល់​ស្វាគមន៍​ដោយ​រង្វាន់​ដ៏​ច្រើន​ផ្សេង​គ្នា​ពី​បណ្ឌិត្យសភា​ក្រុង​ប៉ារីស។ ស្នាដៃ​របស់​គាត់​រួម​មាន​ការកំណត់​ប្រកប​សុក្រឹតភាព​ខ្ពស់​បំផុត​នូវ​គន្លង​របស់​ផ្កាយ​ដុះកន្ទុយ​និង​ភព​ផ្សេង​ទៀត, ការ​យល់​ដឹង​ពី​លក្ខណៈ​នៃ​ផ្កាយ​ដុះកន្ទុយ, និង​គណនាប៉ារ៉ាឡ័ក្ស របស់​ព្រះ​អាទិត្យ។ ការ​គណនា​របស់​គាត់ក៏​បាន​ជួយ​ដល់​ការ​បង្កើត តារាង​រយៈបណ្ដោយ​ដែល​សុក្រឹត​ជាង​មុន​ផង​ដែរ។[៣៥]

ជាង​នេះ​ទៅ​ទៀត អយល័រ​បាន​ផ្ដល់​វិភាគ​ទាន​យ៉ាង​សំខាន់​ក្នុង​វិស័យ អុបទិច។ គាត់​បាន​បដិសេធ​ទ្រឹស្ដី​អង្គ​តូច​នៃ​ពន្លឺរបស់​ញូតុន​ ក្នុង​ស្នាដៃ Opticks ដែល​ទ្រឹស្ដី​នោះ​ត្រូវ​បាន​គេ​ទទួល​ស្គាល់​យ៉ាង​ទូលំ​ទូលាយ​ជា​យូរ​មក​ហើយ។​ ​ភែបភ័រ​ឆ្នាំ​១៧៤០​របស់​គាត់​ស្ដី​ពី​អុបទិច​បាន​បញ្ជាក់​យ៉ាង​ច្បាស់​ថា​ ទ្រឹស្ដី​រលក​នៃ​ពន្លឺ​របស់Christian Huygens នឹង​ក្លាយ​ទស្សនៈ​ថ្មី​ដែល​គេ​ទទួល​ស្គាល់​ជា​ទូទៅទៅ​ថ្ងៃ​មុខ ហើយ​ទ្រឹស្តី​នេះ​ត្រូវ​បាន​គេ​ទទួល​ស្គាល់​ជា​ទូទៅ​រហូតមក​ដល់​សម័យ​បង្កើត​ទ្រឹស្ដី​បទ​កង់តូម​នៃ​ពន្លឺ[៣៦]

តក្កវិទ្យា

គាត់​ក៏​ត្រូវ​បាន​គេ​ទទួល​ស្គាល់​ផងដែរ​ថា​បាន​ប្រើ​ប្រាស់ខ្សែកោង​បិទជិត ដើម្បី​បកស្រាយ​អំណះអំណាង​តក្ក​វិទ្យា​បែប​ស៊ីឡូស៊ីក។ ដ្យាក្រាម​ទាំង​នេះ​ក្រោយ​មក​ត្រូវ​បាន​គេ​ដាក់​ឈ្មោះ​ថា ដ្យាក្រាម​អយល័រ[៣៧]

ឯកសារ​យោង

  1. The pronunciation /ˈjuːlər/ is incorrect. "Euler", Oxford English Dictionary, second edition, Oxford University Press, 1989 "Euler", Merriam–Webster's Online Dictionary, 2009. "Euler, Leonhard", The American Heritage Dictionary of the English Language, fourth edition, Houghton Mifflin Company, Boston, 2000. ទំព័រគំរូ:Cite book
  2. ទំព័រគំរូ:Cite book
  3. ៣,០ ៣,១ ទំព័រគំរូ:Cite journal
  4. ទំព័រគំរូ:Cite book
  5. ទំព័រគំរូ:Cite journal
  6. ទំព័រគំរូ:Cite book
  7. Translation of Euler's dissertation in English by Ian Bruce
  8. ៨,០ ៨,១ ទំព័រគំរូ:Cite journal
  9. ទំព័រគំរូ:Cite journal
  10. ទំព័រគំរូ:Cite journal
  11. ទំព័រគំរូ:Cite journal
  12. ទំព័រគំរូ:Cite book, p. 402.
  13. ទំព័រគំរូ:Cite web
  14. ទំព័រគំរូ:Cite web
  15. ១៥,០ ១៥,១ ១៥,២ ទំព័រគំរូ:Cite book
  16. ទំព័រគំរូ:Cite journal
  17. ទំព័រគំរូ:Cite book, p. 405.
  18. ទំព័រគំរូ:Cite book
  19. ទំព័រគំរូ:Cite journal
  20. ទំព័រគំរូ:Findagrave
  21. ២១,០ ២១,១ ទំព័រគំរូ:Cite book
  22. ទំព័រគំរូ:Cite web
  23. ២៣,០ ២៣,១ ទំព័រគំរូ:Cite book
  24. ទំព័រគំរូ:Cite book
  25. ២៥,០ ២៥,១ ទំព័រគំរូ:Cite journal
    ទំព័រគំរូ:Cite journal
    See also: ទំព័រគំរូ:Cite web
  26. ទំព័រគំរូ:Cite book
  27. ទំព័រគំរូ:Cite book
  28. Caldwell, Chris. The largest known prime by year
  29. ២៩,០ ២៩,១ ទំព័រគំរូ:Cite journal
  30. ទំព័រគំរូ:Cite book
  31. ទំព័រគំរូ:Cite book
  32. ទំព័រគំរូ:Cite journal
  33. ទំព័រគំរូ:Cite journal
  34. ទំព័រគំរូ:Cite journal
  35. Youschkevitch, A P; Biography in Dictionary of Scientific Biography (New York 1970–1990).
  36. ទំព័រគំរូ:Cite journal
  37. Baron, M. E.; A Note on The Historical Development of Logic Diagrams. The Mathematical Gazette: The Journal of the Mathematical Association. Vol LIII, no. 383 May 1969.

តំណ​ភ្ជាប់​ខាងក្រៅ

ទំព័រគំរូ:Sister project links